Fandom

Math Wiki

Integration by trigonometric substitution

Redirected from Trigonometric substitution

1,016pages on
this wiki
Add New Page
Talk0 Share

Integration by trigonometric substitution is a technique of integration that involves substituting some function of x for a trigonometric function.

As a general rule, when taking an antiderivative of a function in the form \sqrt{a^2-x^2} , the substitution x=a\sin(u) is usually the best option. For \sqrt{a^2+x^2} and \sqrt{a^2-x^2} , the substitutions x=a\tan(u) and x=a\sec(u) (respectively) are usually the best options.

Examples

This technique can be used when functions would be otherwise difficult to integrate. One of the most well-known examples is

\int\dfrac{dx}{\sqrt{1-x^2}}

Here, we can use the substitution x=\sin(u),\ dx=\cos(u)du to get

\begin{align}&\int\dfrac{\cos(u)}{\sqrt{1-\sin^2(u)}}du=\int\dfrac{\cos(u)}{\sqrt{\cos^2(u)}}du=\int du=u\\&x=\sin(u)\Rightarrow\arcsin(x)=u\end{align}

Therefore:

\int\dfrac{dx}{\sqrt{1-x^2}}=\arcsin(x)

A second example:

\int\dfrac{dx}{x^2\sqrt{4+x^2}}=\int\dfrac{dx}{x^2\sqrt{2^2+x^2}}

Here, we can use the substitution x=2\tan(u),\ dx=2\sec^2(u)du to get

\begin{align}\int\dfrac{2\sec^2(u)}{(2\tan(u))^2\sqrt{4(1+\tan^2(u))}}du&=\int\dfrac{2\sec^2(u)}{8\tan^2(u)\sqrt{1+\tan^2(u)}}du\\&=\frac14\int\dfrac{\sec^2(u)}{\tan^2(u)\sqrt{1+\tan^2(u)}}du\end{align}

By using the trigonometric identity 1+\tan^2(u)=\sec^2(u) , we get

\begin{align}\frac14\int\dfrac{\sec^2(u)}{\tan^2(u)\sqrt{\sec^2(u)}}du&=\frac14\int\dfrac{\sec^2(u)}{\tan^2(u)\sec(u)}du\\&=\frac14\int\frac{\sec(u)}{\tan^2(u)}du=\frac14\int\frac{\cos(u)}{\sin^2(u)}du\end{align}

Which evaluates to -\frac{1}{\sin(u)} by using u-substitution. Since

x=2\tan(u)\Rightarrow\arctan\left(\tfrac{x}{2}\right)=u

we can say that

-\frac{1}{4\sin(u)}=-\frac{1}{4\sin\left(\arctan\left(\tfrac{x}{2}\right)\right)}
=-\frac{1}{\dfrac{4x}{\sqrt{4+x^2}}}=-\frac{\sqrt{4+x^2}}{4x}

Therefore:

\int\dfrac{dx}{x^2\sqrt{4+x^2}}=-\frac{\sqrt{4+x^2}}{4x}+C

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.