FANDOM


The following is a table of indefinite integrals, or antiderivatives.

Standard functions

Logarithmic and exponential functions

  • \int a^xdx=\dfrac{a^x}{\ln(a)}+C
  • \int e^xdx=e^x+C
  • \int\dfrac{dx}{x}=\ln\big(|x|\big)+C
  • \int\ln(x)dx=x\ln(x)-x+C
  • \int\log_a(x)dx=x\log_a(x)-\dfrac{a^x}{\ln(a)}+C

Trigonometric functions

  • \int\sin(x)dx=-\cos(x)+C
  • \int\cos(x)dx=\sin(x)+C
  • \int\tan(x)dx=-\ln\big(|\cos(x)|\big)+C=\ln\big(|\sec(x)|\big)+C
  • \int\csc(x)dx=\ln\left(\left|\tan\left(\tfrac{x}{2}\right)\right|\right)+C
  • \int\sec(x)dx=\ln\big(|\sec(x)+\tan(x)|\big)+C
  • \int\cot(x)dx=\ln\big(|\sin(x)|\big)+C
  • \int\dfrac{dx}{\sqrt{1-x^2}}=\arcsin(x)+C
  • \int-\dfrac{dx}{\sqrt{1-x^2}}=\arccos(x)+C
  • \int\dfrac{dx}{1+x^2}=\arctan(x)+C
  • \int-\dfrac{dx}{1+x^2}=\arccot(x)+C
  • \int\dfrac{dx}{x\sqrt{x^2-1}}=\arcsec\big(|x|\big)+C
  • \int-\dfrac{dx}{x\sqrt{x^2-1}}=\arccsc\big(|x|\big)+C

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.