Fandom

Math Wiki

Pythagorean theorem/Proof

< Pythagorean theorem

1,016pages on
this wiki
Add New Page
Talk1 Share
Theorem
a^2+b^2=c^2 , where a,b,c are the sides of a right triangle, c is the hypotenuse, and a,b are the legs.
Theorem. '
Prerequisites:
Formula for area of triangle
Additive nature of area


Proof.
Two squares pyth

Construct a square of arbitrary side length c . Construct a second square, larger than the first, and place it such that each side is tangent to exactly one vertex of the first square, forming four congruent right triangles such that c is the length of the hypotenuse. Let a represent the length of one leg of a triangle and let b represent the length of the second leg. Since area is additive in nature, the area of the larger square is equivalent to the sum of the area of the smaller square and the area of the triangles:

\begin{align}
&(a+b)^2=c^2+4\left(\frac{ab}{2}\right)\\&a^2+2ab+b^2=c^2+2ab\\&a^2+b^2=c^2
\end{align}

Tombstone

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.