# Proof of the Cauchy-Schwarz inequality

*1,069*pages on

this wiki

## Ad blocker interference detected!

### Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

If and are vectors in , then

## Proof

If either or are the zero vector, the statement holds trivially, so assume that both and are nonzero. Let be a scalar and be defined as . Since, for any nonzero vector , (**NOTE**: merits own proof)

where , and . It can be seen clearly that is a quadratic polynomial that is non-negative for any . Consequently, the polynomial has two complex roots, or has a single distinct real root.^{[1]}

Remember that the roots of are given by the quadratic formula

In particular, the term must either be negative, yielding two complex roots, or zero, yielding a single real root. Thus

Substituting the values of , and into the last of these inequalities, it can be seen that

**Failed to parse (unknown function\lvert): \lvert \vec{X} \cdot \vec{Y} \rvert \leq \lVert \vec{X} \rVert \lVert \vec{Y} \rVert**

which is equal to the original statement.

QED

## Notes

- ↑ Intuitively, the graph of is either 'floating above' the horizontal axis, if it has two complex roots, or tangent if it has one real root. Since is non-negative for every , it can't have two real roots because the graph of the function would have to 'pass under' the horizontal axis.