## FANDOM

1,142 Pages

Regular polytopes and uniform prismatic names proposed by Jonathan Bowers

Every regular polytope below can be replaced by a convex uniform polytope.

• 2D
• 3D:
• 4D:
• 5D:
• {p,q,r,s} - polyteron
• {} x {p,q,r} - chorism
• {p} x {q,r} - gonahedrism
• {} x {p} x {q} - duoprismism
• 6D:
• {p,q,r,s,t} - polypeton
• {} x {p,q,r,s} - terism
• {p} x {p,r,s} - gonachorism
• {p,q} x {r,s} - duohedrism
• {} x {p} x {q,r} – gonahedrismism
• {p} x {q} x {r} – triprism
• 7D:
• {p,q,r,s,t,u} - polyexon
• {} x {p,q,r,s,t} - petism
• {p} x {q,r,s,t} - gonaterism
• {p,q} x {r,s,t} - hedrochorism
• {} x {p} x {q,r,s} - gonachorismism
• {} x {p,q} x {r,s} - duohedrismism
• {p} x {q} x {r,s} - duogonahedrism
• {} x {p} x {q} x {r} – triprismism
• nD, for n >= 8: NOTE: order of p,q,r,... is retained in all!
• {p,q,r,...,s,t,u} - n-polytope
• all 1-subsets of floor(n/2) elements: n-1-prism
• (L x ) S1 x S2 x S3 x ... x Sm subsets: |S1|-|S2|-|S3|-...-|Sm|-prism(ism) with the summation of all cardinalities equaling n