Hyperbolic functions are functions similar to ordinary trigonometric functions, but based on the unit hyperbola (x^2-y^2=1) rather than the unit circle (x^2+y^2=1). The most common are hyperbolic sine (sinh), hyperbolic cosine (cosh), and hyperbolic tangent (tanh), their reciprocals hyperbolic cosecant (csch), hyperbolic secant (sech), and hyperbolic cotangent (coth), and their inverses.


Basic identities

  • \sinh(x)=\frac{e^x-e^{-x}}{2}
  • \cosh(x)=\frac{e^x+e^{-x}}{2}
  • \tanh(x)=\frac{\sinh(x)}{\cosh(x)}=\frac{e^x-e^{-x}}{e^x+e^{-x}}
  • \text{csch}(x)=\frac{2}{e^x-e^{-x}}
  • \text{sech}(x)=\frac{2}{e^x+e^{-x}}
  • \coth(x)=\frac{\cosh(x)}{\sinh(x)}=\frac{e^x+e^{-x}}{e^x-e^{-x}}

Relations to trig functions

  • \sinh(x)=-i\sin(xi)
  • \cosh(x)=\cos(xi)
  • \tanh(x)=-i\tan(xi)
  • \text{csch}(x)=i\csc(xi)
  • \text{sech}(x)=\sec(xi)
  • \coth(x)=i\cot(xi)

Pythagorean identities

  • \cosh^2(x)-\sinh^2(x)=1
  • \tanh^2(x)+\text{sech}^2(x)=1
  • \coth^2(x)-\text{csch}^2(x)=1


See also

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.