## FANDOM

1,150 Pages

For alternative uses of the exclamation point symbol, please see double factorial for expressions
of the form 4!! or subfactorial for expressions of the form !3 .


Factorial is a function denoted by a trailing exclamation point (!), which is defined for all non-negative integers.

For any positive integer, it outputs the product of all natural numbers between 1 and that number, inclusive:

$n!\equiv1\cdot2\cdot3\cdots n$

The notation $n!$ is read "$n$ factorial". Alternatively, one could think of the product as being in the opposite order:

$n!\equiv n(n-1)(n-2)\cdots3\cdot2\cdot1$

As a consequence of the empty product,

$0!\equiv1$

As a concrete example:

$5!=1\cdot2\cdot3\cdot4\cdot5=120$

Factorials are commonly used in combinatorics and probability theory. It is also used in Taylor polynomials and infinite series.

The factorial function can also be seen as a specific case of the gamma function ($\Gamma$), which extends the factorial to the complex plane (excluding the non-positive integers). In particular, for all values for which the factorial is defined:

$n!=\Gamma(n+1)$