A critical point is a point on a graph at which the derivative is either equal to zero or does not exist.

If a critical point is equal to zero, it is called a stationary point (where the slope of the original graph is zero). If it does not exist, this can correspond to a discontinuity in the original graph or a vertical slope.


A critical point equal to zero may indicate the presence of an extreme value, if the second derivative of the function is non-zero. A positive second derivative indicates a local minima, and a negative second derivative indicates a local maxima. Note that some functions (e.g. f(x,y)=x^3 or f(x,y)=y^2-x^2) have critical points that aren't extreme values.

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.