Wikia

Math Wiki

Constant multiple rule of derivatives/Proof

Talk0
877pages on
this wiki

\frac{d}{dx}a\,f(x)=a\,f'(x), for some constant a.

PrerequisitesEdit

Limit definition of the derivative, f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}

ProofEdit

Let g(x)=a\,f(x) for some constant a. By the limit definition of the derivative:

f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}
a\,f'(x)=a\,\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}=\lim_{h \to 0}\frac{a\,f(x+h)-a\,f(x)}{h}

To prove the proposition, it suffices to show that g'(x)=a\,f'(x).

g'(x)=\lim_{h \to 0}\frac{g(x+h)-g(x)}{h}
g'(x)=\lim_{h \to 0}\frac{a\,f(x+h)-a\,f(x)}{h}=a\,f'(x)

QED

Around Wikia's network

Random Wiki